کشف 50 سیاره جدید به یاری هوش مصنوعی
به گزارش فروشگاه اینترنتی هرپو، این 50 سیاره جدید مجموعه ای از سیاراتی را در اندازه های مختلف، از اندازه نپتون تا کوچکتر از زمین، تشکیل می دهند. بعضی از آن ها مداری دارند که معادل 200 شبانه روز زمین هستند و بعضی دیگر با سرعتی معادل یک بار در شبانه روز دور ستاره خود می چرخند.
الگوریتم هوش مصنوعی علاوه بر قابلیت تشخیص سیاره های واقعی، می تواند تشخیص های خطا را نیز شناسایی کند
یک الگوریتم هوش مصنوعی موجب کشف 50 سیاره جدید شده است که انسان تا کنون پیروز به کشف آن ها نشده بود. با استفاده از این الگوریتم، داده های تلسکوپ هایی نظیر کپلر و تس برای یافتن نشانه هایی از سیاره های دور مورد تجزیه و تحلیل نهاده شد.
الگوریتم مزبور علاوه بر قابلیت تشخیص سیاره های واقعی، می تواند تشخیص های خطا را نیز شناسایی کند. پس از تحلیل داده ها، دانشمندان اداره فیزیک و علوم کامپیوتر واریک، همین الگوریتم را روی سیاره های تأیید نشده ای که از داده های کپلر به دست آمده است، پیاده سازی می نمایند تا به سیارات جدید برسند.
پیش از این، ابزار های کامپیوتری می توانستند احتمال سیاره بودن یک سیاره را معین نمایند، اما هیچ گاه نتوانسته بودند این احتمال را که یک سیاره ای جزو یک منظومه خورشیدی (ورای منظومه شمسی ما) باشد، محاسبه و اثبات نمایند.
این 50 سیاره جدید مجموعه ای از سیاراتی را در اندازه های مختلف، از اندازه نپتون تا کوچکتر از زمین، تشکیل می دهند. بعضی از آن ها مداری دارند که معادل 200 شبانه روز زمین هستند و بعضی دیگر با سرعتی معادل یک بار در شبانه روز دور ستاره خود می چرخند.
ستاره شناسان حالا به یاری این الگوریتم، بهتر می توانند تصمیم بگیرند که کدام یک از آن سیارات ارزش تحقیقات بیشتر دارد. بیشتر داده هایی که از رصد کردن سیاره های خارج از منظومه شمسی به دست آمده اند، اجرامی را نشان می دهند که بین تلسکوپ و ستاره آن ها حرکت می نمایند.
به این پدیده گذار (transiting) می گویند، که باعث تغییر در رنگ نوری می گردد که از ستاره آن می تراود و از زمین قابل مشاهده است. البته کشف سیاره ها به وسیله پدیده گذار همواره پیروز نیست. گاهی سیستم های دو ستاره ای، برخورد و تداخل نور با اجرام دیگر، یا خطای تلسکوپ نیز موجب بروز چنین آثاری می گردد، که در این صورت الگوریتم جدید می تواند این تشخیص خطا را شناسایی کند و از محاسبه خارج کند.
به گفته دکتر دیوید آرمسترانگ، از دانشکده فیزیک دانشگاه وارویک، تا به حال هیچ گاه از روش های کامپیوتری یادگیرنده (که از آزمون و خطای خود می آموزند) برای اعتبارسنجی تشحیص سیارات استفاده نشده بود. روش های کامپیوتری یادگیرنده برای اولویت بندی سیاره های احتمالی به کار گرفته شد بود، اما نه بر پایه احتمالات، که برای اعتبارسنجی سیاره واقعا مورد احتیاج است.
او ادامه داد: حالا به جای این که بگوییم کدام کاندیدای فرضی احتمال بیشتری دارد که سیاره باشد، می توانیم احتمال دقیق آن را با اتکا به پایه های آماری به دست آوریم. اگر تشخیص خطای یک سیاره احتمالی کمتر از یک درصد داشته باشد، فرض می گیریم که سیاره درست تشخیص داده شده است.
الگوریتم پس از آن که تنظیم و تکمیل شد، می تواند به صورت کاملا اتوماتیک به کار گرفته گردد. در این صورت است که می توان هزاران کاندیدای سیاره بودن (در یک منظومه) را به وسیله الگوریتم مورد تحلیل قرار داد. به گفته دکتر آرمسترانگ، الگوریتم مزبور از 8 هزار کاندیدا فقط سه مورد را به خطا تشخیص داده است.
او به نشریه رجیستر گفت: ما چند خطای واضح در نتایج پیدا کردیم، اما بعد معلوم شد که آن خطا هایی ناشی از برچسب گذاری های قبلی بودند.
منبع: ایندیپندنت
منبع: فرادید